Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 81(1): 168, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587639

RESUMO

Kinesin family member 3A (KIF3A) is a microtubule-oriented motor protein that belongs to the kinesin-2 family for regulating intracellular transport and microtubule movement. In this study, we characterized the critical roles of KIF3A during mouse oocyte meiosis. We found that KIF3A associated with microtubules during meiosis and depletion of KIF3A resulted in oocyte maturation defects. LC-MS data indicated that KIF3A associated with cell cycle regulation, cytoskeleton, mitochondrial function and intracellular transport-related molecules. Depletion of KIF3A activated the spindle assembly checkpoint, leading to metaphase I arrest of the first meiosis. In addition, KIF3A depletion caused aberrant spindle pole organization based on its association with KIFC1 to regulate expression and polar localization of NuMA and γ-tubulin; and KIF3A knockdown also reduced microtubule stability due to the altered microtubule deacetylation by histone deacetylase 6 (HDAC6). Exogenous Kif3a mRNA supplementation rescued the maturation defects caused by KIF3A depletion. Moreover, KIF3A was also essential for the distribution and function of mitochondria, Golgi apparatus and endoplasmic reticulum in oocytes. Conditional knockout of epithelial splicing regulatory protein 1 (ESRP1) disrupted the expression and localization of KIF3A in oocytes. Overall, our results suggest that KIF3A regulates cell cycle progression, spindle assembly and organelle distribution during mouse oocyte meiosis.


Assuntos
Cinesinas , Oócitos , Animais , Camundongos , Transporte Biológico , Cinesinas/genética , Meiose , Metáfase
2.
Medicine (Baltimore) ; 103(13): e37459, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38552060

RESUMO

BACKGROUND: Music therapy (MT) has received increasing attention from scholars in the efficacy treatment of anxiety symptoms, which is of great significance to human physical and mental health. The visual mapping functionality of CiteSpace and Vosviewer software was applied in this study to assess the status of MT in the treatment of anxiety symptoms. METHODS: In order to find research on MT and anxiety that were relevant for this research, we searched the Web of Science database. We also utilized CiteSpace and VOSviewer software to examine institutions, journals, authors, publications, and keywords for scientometric and visual analysis. RESULTS: Our findings show that since 2009, the field has developed rapidly and publications on MT and anxiety have gradually increased. The journal Complement Therapies In Medicine published the most relevant articles, the Cochrane Database Of Systematic Reviews journal had the highest citation frequency, and the United States had the most publications. The majority of the top academic institutions in the region are found in the United States, with the University of London having the most publications. The evolution of this field was significantly influenced by Gold C., the author with the most publications, and Bradt J., the author with the most co-citations. The topics of anxiety, nursing, cancer, and pain management have been the focus of this research. CONCLUSION: This study has the potential to increase public understanding of MT and anxiety as well as mental health awareness, all of which are crucial for lowering the prevalence of mental diseases.


Assuntos
Musicoterapia , Humanos , Revisões Sistemáticas como Assunto , Ansiedade/terapia , Transtornos de Ansiedade , Bibliometria
3.
Adv Sci (Weinh) ; 11(4): e2303009, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38014604

RESUMO

ADP-ribosylation factor 1 (Arf1) is a small GTPase belonging to the Arf family. As a molecular switch, Arf1 is found to regulate retrograde and intra-Golgi transport, plasma membrane signaling, and organelle function during mitosis. This study aimed to explore the noncanonical roles of Arf1 in cell cycle regulation and cytoskeleton dynamics in meiosis with a mouse oocyte model. Arf1 accumulated in microtubules during oocyte meiosis, and the depletion of Arf1 led to the failure of polar body extrusion. Unlike mitosis, it finds that Arf1 affected Myt1 activity for cyclin B1/CDK1-based G2/M transition, which disturbed oocyte meiotic resumption. Besides, Arf1 modulated GM130 for the dynamic changes in the Golgi apparatus and Rab35-based vesicle transport during meiosis. Moreover, Arf1 is associated with Ran GTPase for TPX2 expression, further regulating the Aurora A-polo-like kinase 1 pathway for meiotic spindle assembly and microtubule stability in oocytes. Further, exogenous Arf1 mRNA supplementation can significantly rescue these defects. In conclusion, results reported the noncanonical functions of Arf1 in G2/M transition and meiotic spindle organization in mouse oocytes.


Assuntos
Fator 1 de Ribosilação do ADP , Fuso Acromático , Camundongos , Animais , Fator 1 de Ribosilação do ADP/genética , Fator 1 de Ribosilação do ADP/metabolismo , Fuso Acromático/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Meiose , Oócitos/metabolismo , Complexo de Golgi/metabolismo
4.
J Environ Sci (China) ; 139: 308-319, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38105057

RESUMO

Aluminum (Al) can lead to an exposure of creature in varieties ways for its universality, and it could disturb normal physiological metabolism, with the damage to multisystem including reproduction. Since the oocyte quality is critical for female reproduction, we inspected the toxicity of Al on mouse oocyte maturation. We constructed in vitro exposure mouse model, and we found that 5 mmol/L Al had adverse effects on oocyte maturation by impairing organelle and cytoskeleton. Aberrant spindle and misaligned chromosomes which might be considered to be caused by elevated levels of acetylation, as well as abnormal distribution of actin dynamics could hinder normal meiosis of oocytes. Organelle dysfunction indicated that Al affected proteins synthesis, transport and digestion, which would further damage oocyte maturation. In order to explore the mechanism of Al toxicity, our further investigation demonstrated that Al caused mitochondrial dysfunction and imbalance calcium homeostasis, resulting in limited energy supply. Moreover, high level of reactive oxygen species, DNA damage and apoptosis caused by oxidative stress were also the manifestation of Al toxicity on oocytes. In conclusion, our study provided the evidence that Al exposure affected oocyte quality through its effects on spindle organization, actin dynamics, organelle function and the induction of DNA damage-related apoptosis with mouse model.


Assuntos
Actinas , Alumínio , Feminino , Camundongos , Animais , Alumínio/toxicidade , Actinas/metabolismo , Oócitos/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Dano ao DNA , Apoptose
5.
EMBO Rep ; 24(5): e56273, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-36951681

RESUMO

Microspherule protein 1 (Mcrs1) is a component of the nonspecific lethal (NSL) complex and the chromatin remodeling INO80 complex, which participates in transcriptional regulation during mitosis. Here, we investigate the roles of Mcrs1 during female meiosis in mice. We demonstrate that Mcrs1 is a novel regulator of the meiotic G2/M transition and spindle assembly in mouse oocytes. Mcrs1 is present in the nucleus and associates with spindle poles and chromosomes of oocytes during meiosis I. Depletion of Mcrs1 alters HDAC2-mediated H4K16ac, H3K4me2, and H3K9me2 levels in nonsurrounded nucleolus (NSN)-type oocytes, and reduces CDK1 activity and cyclin B1 accumulation, leading to G2/M transition delay. Furthermore, Mcrs1 depletion results in abnormal spindle assembly due to reduced Aurora kinase (Aurka and Aurkc) and Kif2A activities, suggesting that Mcrs1 also plays a transcription-independent role in regulation of metaphase I oocytes. Taken together, our results demonstrate that the transcription factor Mcrs1 has important roles in cell cycle regulation and spindle assembly in mouse oocyte meiosis.


Assuntos
Meiose , Fuso Acromático , Feminino , Camundongos , Animais , Fuso Acromático/metabolismo , Metáfase , Oócitos/metabolismo , Pontos de Checagem do Ciclo Celular , Proteínas Repressoras/metabolismo , Cinesinas/metabolismo , Proteínas de Ligação a RNA/metabolismo
6.
Cell Mol Life Sci ; 79(8): 422, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35835966

RESUMO

Microtubule dynamics ensure multiple cellular events during oocyte meiosis, which is critical for the fertilization and early embryo development. KIF15 (also termed Hklp2) is a member of kinesin-12 family motor proteins, which participates in Eg5-related bipolar spindle formation in mitosis. In present study, we explored the roles of KIF15 in mouse oocyte meiosis. KIF15 expressed during oocyte maturation and localized with microtubules. Depletion or inhibition of KIF15 disturbed meiotic cell cycle progression, and the oocytes which extruded the first polar body showed a high aneuploidy rate. Further analysis showed that disruption of KIF15 did not affect spindle morphology but resulted in chromosome misalignment. This might be due to the reduced stability of the K-fibers, which further induced the loss of kinetochore-microtubule attachment and activated spindle assembly checkpoint, showing with the failed release of Bub3 and BubR1. Based on mass spectroscopy analysis and coimmunoprecipitation data we showed that KIF15 was responsible for recruiting HDAC6, NAT10 and SIRT2 to maintain the acetylated tubulin level, which further affected tubulin acetylation for microtubule stability. Taken together, these results suggested that KIF15 was essential for the microtubule acetylation and cell cycle control during mouse oocyte meiosis.


Assuntos
Cinesinas , Tubulina (Proteína) , Acetilação , Animais , Cinesinas/genética , Pontos de Checagem da Fase M do Ciclo Celular , Meiose , Camundongos , Microtúbulos/metabolismo , Oócitos/metabolismo , Fuso Acromático/metabolismo , Tubulina (Proteína)/metabolismo
7.
Reprod Toxicol ; 110: 172-179, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35504548

RESUMO

Zearalenone is a mycotoxin produced by fungi of the genus Fusarium, which has severe toxicity on animal and human health including reproduction. Previous study showed that zearalenone exposure inhibited oocyte polar body extrusion, while in present study we found that high dose zearalenone disturbed oocyte meiosis resumption. Our results showed that a high concentration of 100 µM zearalenone reduced the rate of germinal vesicle (GV) breakdown in mouse oocytes. Further analysis indicated that zearalenone caused the decrease of Cyclin B1 and CDK1 expression, indicating MPF activity was affected, which further induced G2/M arrest, and this could be rescued by the inhibition of Wee1 activity. We found that the oocytes under high concentration of zearalenone showed lower γ-H2A.X expression, suggesting that DNA damage repair was disturbed, which further activated of DNA damage checkpoints. This could be confirmed by the altered expression of CHK1 and CHK2 after zearalenone treatment. Moreover, the organelles such as mitochondria, ribosome, endoplasmic reticulum and Golgi apparatus were diffused from germinal vesicle periphery after zearalenone exposure, indicating that zearalenone affected protein synthesis, modification and transport, which further induced the arrest of G2/M transition. Taken together, our results showed that high dose of zearalenone exposure induced G2/M transition defect by affecting organelle function-related CHK1/2-Wee1-MPF pathway.


Assuntos
Zearalenona , Animais , Apoptose , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Meiose , Camundongos , Oócitos/metabolismo , Zearalenona/toxicidade
8.
Molecules ; 27(6)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35335118

RESUMO

Porous graphitic carbon nitride (g-C3N4) was prepared by dicyandiamide and urea via the pyrolysis method, which possessed enhanced visible-light-driven photocatalytic performance. Its surface area was increased from 17.12 to 48.00 m2/g. The porous structure not only enhanced the light capture capacity, but also accelerated the mass transfer ability. The Di (Dicyandiamide)/Ur (Urea) composite possessed better photocatalytic activity for Rhodamine B in visible light than that of g-C3N4. Moreover, the Di/Ur-4:5 composite showed the best photoactivity, which was almost 5.8 times that of g-C3N4. The enhanced photocatalytic activity showed that holes and superoxide radical played a key role in the process of photodegradation, which was ascribed to the enhanced separation of photogenerated carriers. The efficient separation of photogenerated electron-hole pairs may be owing to the higher surface area, O dopant, and pore volumes, which can not only improve the trapping opportunities of charge carriers but also the retarded charge carrier recombination. Therefore, it is expected that the composite would be a promising candidate material for organic pollutant degradation.


Assuntos
Luz , Fotólise , Porosidade
9.
J Mol Cell Biol ; 14(1)2022 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-34918122

RESUMO

Leucine-rich-repeat kinase 2 (LRRK2) belongs to the Roco GTPase family and is a large multidomain protein harboring both GTPase and kinase activities. LRRK2 plays indispensable roles in many processes, such as autophagy and vesicle trafficking in mitosis. In this study, we showed the critical roles of LRRK2 in mammalian oocyte meiosis. LRRK2 is mainly accumulated at the meiotic spindle periphery during oocyte maturation. Depleting LRRK2 led to the polar body extrusion defects and also induced large polar bodies in mouse oocytes. Mass spectrometry analysis and co-immunoprecipitation results showed that LRRK2 was associated with several actin-regulating factors, such as Fascin and Rho-kinase (ROCK), and depletion of LRRK2 affected the expression of ROCK, phosphorylated cofilin, and Fascin. Further analysis showed that LRRK2 depletion did not affect spindle organization but caused the failure of spindle migration, which was largely due to the decrease of cytoplasmic actin filaments. Moreover, LRRK2 showed a similar localization pattern to mitochondria, and LRRK2 was associated with several mitochondria-related proteins. Indeed, mitochondrial distribution and function were both disrupted in LRRK2-depleted oocytes. In summary, our results indicated the critical roles of LRRK2 in actin assembly for spindle migration and mitochondrial function in mouse oocyte meiosis.


Assuntos
Actinas , Meiose , Actinas/metabolismo , Animais , GTP Fosfo-Hidrolases/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Mamíferos , Camundongos , Mitocôndrias/metabolismo , Oócitos/metabolismo
10.
J Hazard Mater ; 416: 125862, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492810

RESUMO

Di (2-ethylhexyl) phthalate (DEHP) is widely used as a plastic additive and it could induce reproduction defects and fertility in mammals as environmental endocrine disruptor. However, the effects and potential mechanism of DEHP exposure during lactation stage on follicular development of offspring are still unclear. In this study, we found that the total primordial follicle number and antral follicles in the suckling of mice exposed to DEHP during lactation was significantly reduced. RNA-seq analysis results showed that the transcription levels of genes related to steroid production, ovarian hormone secretion and oxidative stress were significantly changed, which led to a decrease in 17ß-estradiol and an increase in oxidative stress. The proportion of DNA damage marker γH2AX in the ovary of female suckling exposed to DEHP was significantly increased. We also found an increase in the level of ovarian apoptosis, and the proliferation of ovarian granulosa cells was inhibited. These alterations also lead to abnormal spindle and chromosome misalignment during oocyte maturation. Overall, our data indicate that lactation exposure to DEHP can affect the secretion of hormones and the development of antral follicles in suckling mice by affecting the secretion pathways of ovarian hormone enzymes and oxidative stress pathway.


Assuntos
Dietilexilftalato , Ovário , Animais , Dietilexilftalato/toxicidade , Estradiol , Feminino , Lactação , Camundongos , Folículo Ovariano
11.
Ecotoxicol Environ Saf ; 225: 112783, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34544023

RESUMO

Sudan I is one of the industry dyes and widely used in cosmetics, wax agent, solvent and textile. Sudan I has multiple toxicity such as carcinogenicity, mutagenicity, genotoxicity and oxidative damage. However, Sudan I has been illegally used as colorant in food products, triggering worldwide attention about food safety. Nevertheless, the toxicity of Sudan I on reproduction, particularly on oocyte maturation is still unclear. In the present study, using mouse in vivo models, we report the toxicity effects of Sudan I on mouse oocyte. The results reflect that Sudan I exposure disrupts spindle organization and chromosomes alignment as well as cortical actin distribution, thus leading to the failure of polar body extrusion. Based on the transcriptome results, it is found that the exposure of Sudan I leads to the change in expression of 764 genes. Moreover, it's further reflected that the damaging effects of Sudan I are mediated by the destruction of mitochondrial functions, which induces the accumulated ROS to stimulate oxidative stress-induced apoptosis. As an endogenous hormone, melatonin within the ovarian follicle plays function on improving oocyte quality and female reproduction by efficiently suppressing oxidative stress. Moreover, melatonin supplementation also improves oocyte quality and increases fertilization rate during in vitro culture. Consistent with these, we find that in vivo supplementation of melatonin efficaciously suppresses mitochondrial dysfunction and the accompanying apoptosis, thus reverses oocyte meiotic deteriorations. Collectively, our results prove the reproduction toxicity of Sudan I for the exposure of Sudan I reduces the oocyte quality, and demonstrate the protective effects of melatonin against Sudan I-induced meiotic deteriorations.


Assuntos
Melatonina , Animais , Apoptose , Feminino , Meiose , Melatonina/metabolismo , Melatonina/farmacologia , Camundongos , Mitocôndrias , Naftóis , Oócitos/metabolismo , Estresse Oxidativo
12.
Ecotoxicol Environ Saf ; 223: 112598, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34388657

RESUMO

Oocyte quality is critical for fertilization and early embryo development. Fumonisin B1 (FB1) is a Fusarium mycotoxin and it is commonly found in contaminated food and feedstuff, posing a potential health hazard to both animals and human. FB1 is reported to have hepatotoxicity, neurotoxicity, nephrotoxicity, immunotoxicity and embryotoxicity. However, the effects of FB1 on mouse oocyte quality are still unknown. Here, we explored the toxic effects and potential mechanisms of FB1 on oocyte maturation quality in mice. FB1 exposure inhibited the first polar body extrusion at concentrations of 30 µM and 50 µM, which further induced oocyte meiotic arrest. Besides, disrupted spindle structure was found in oocytes after FB1 exposure. Our results also showed that FB1 exposure impaired mitochondria dysfunction, which further induced oxidative stress and early apoptosis. In addition, we reported that FB1 exposure induced the accumulation of lysosome and occurrence of autophagy. Aberrant ER distribution and ER stress were also found in FB1-exposed oocytes. Moreover, DNA damage was also observed. These results together suggested that FB1 exposure affected oocyte quality by destroying spindle structure, leading to mitochondria, lysosome and ER dysfunction, which further induced oxidative stress, apoptosis, autophagy and DNA damage in mouse oocytes.


Assuntos
Fumonisinas , Animais , Apoptose , Dano ao DNA , Fumonisinas/toxicidade , Camundongos , Mitocôndrias/metabolismo , Oócitos/metabolismo , Estresse Oxidativo
13.
Front Cell Dev Biol ; 9: 642010, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33681227

RESUMO

Infertility in humans at their reproductive age is a world-wide problem. Oocyte in vitro maturation (IVM) is generally used in such cases to acquire the embryo in assisted reproductive technology (ART). However, the differences between an in vivo (IVO) and IVM culture environment in the RNA expression profile in oocytes, remains unclear. In this study, we compared the global RNA transcription pattern of oocytes from in vitro and in vivo maturation. Our results showed that 1,864 genes differentially expressed between the IVO and IVM oocytes. Among these, 1,638 genes were up-regulated, and 226 genes were down-regulated, and these changes were mainly divided into environmental adaption, metabolism, and genetic expression. Our detailed analysis showed that the expression of genes that belonged to metabolism-related processes such as energy metabolism, nucleotide metabolism, and carbohydrate metabolism was changed; and these genes also belonged to organismal systems including environmental adaptation and the circulatory system; moreover, we also found that the relative gene expression of genetic expression processes, such as protein synthesis, modification, and DNA replication and repair were also altered. In conclusion, our data suggests that in vitro maturation of mouse oocyte resulted in metabolism and genetic expression changes due to environmental changes compared with in vivo matured oocytes.

14.
Sci Rep ; 11(1): 5843, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712638

RESUMO

Rapid, accurate detection of heavy-metal content is extremely important for precise risk control and targeted remediation. Herein, a general modeling method and process based on the relationship between Pxrf measured values and site parameters are explored to construct a Pxrf correction model suitable to improve each site's measurement accuracy. Results show a significant correlation between Pb, Mn, and Zn Pxrf measured values and actual concentrations, with correlation coefficients between 0.8 and 0.93. Through the correlation analysis, the correlation coefficient between the water content and the measured value of pxrf is in the range of 0.2-0.5. Pxrf measurement of all heavy metals was weakly affected by soil organic matter content, with correlation coefficients all lower than 0.5. Model transformation effectively improved the correlation between measured Pxrf value and actual concentration, and transformation increased the correlations of Sr, Mn, and Cu by around 0.11. Model verification results showed that the Pb, Zn, Fe, and Mn models can be used to improve Pxrf method detection accuracy.

15.
Waste Manag ; 121: 365-372, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33477055

RESUMO

The service life of high-density polyethylene (HDPE) geomembranes is directly determined by the landfill environment, and the antioxidant depletion stage is the first and most important stage of the HDPE geomembrane aging process. In this study, the antioxidant depletion stage was chosen to investigate the effects of different exposure environments on the HDPE geomembrane lifespan. The antioxidant depletion rate (ADR) and the antioxidant depletion time (ADT) of HDPE geomembranes under various exposure conditions were calculated based on the aging parameters obtained by fitting the collected reported data with the Arrhenius model. Also, the influence of exposure conditions on the HDPE geomembrane performance degradation was analyzed. The results showed that the aging method had the greatest effect on the antioxidant depletion period, while the HDPE geomembrane thickness had the least effect. The ADR sensitivity to brand/material, aging method, leachate components, and exposure medium decreased with increasing temperature; only the sensitivity to thickness showed a slight increasing tendency with increasing temperature. The ADTs of HDPE geomembranes under different exposure conditions ranged from 6 years to 900 years, indicating that the HDPE geomembranes can complete the service time of landfills under reasonable exposure conditions. This study provides a reliable methodological basis for the risk control and life prediction of HDPE geomembranes.


Assuntos
Polietileno , Eliminação de Resíduos , Antioxidantes , Temperatura , Instalações de Eliminação de Resíduos
16.
Environ Pollut ; 270: 116088, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33234378

RESUMO

It is known that Di (2-ethylhexyl) phthalate (DEHP) may impact mammalian reproduction and that in females one target of the drug's action is follicle assembly. Here we revisited the phthalate's action on the ovary and from bioinformatics analyses of the transcriptome performed on newborn mouse ovaries exposed in vitro to DEHP, up-regulation of PDE3A, as one of the most important alterations caused by DEHP on early folliculogenesis, was identified. We obtained some evidence suggesting that the decrease of cAMP level in oocytes and the parallel decrease of PKA expression, consequent on the PDE3A increase, were a major cause of the reduction of follicle assembly in the DEHP-exposed ovaries. In fact, Pde3a RNAi on cultured ovaries reducing cAMP and PKA decrease counteracted the primordial follicle assembly impairment caused by the compound. Moreover, RNAi normalized the level of Kit, Nobox, Figla mRNA and GDF9, BMP15, CX37, γH2AX proteins in oocytes, and KitL transcripts in granulosa cells as well as their proliferation rate altered by DEHP exposure. Taken together, these results identify PDE3A as a new critical target of the deleterious effects of DEHP on early oogenesis in mammals and highlight cAMP-dependent pathways as major regulators of oocyte and granulosa cell activities crucial for follicle assembly. Moreover, we suggest that the level of intracellular cAMP in the oocytes may be an important determinant for their capability to repair DNA lesions caused by DNA damaging compounds including DEHP.


Assuntos
Dietilexilftalato , Ácidos Ftálicos , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3 , Dietilexilftalato/toxicidade , Feminino , Camundongos , Oócitos , Folículo Ovariano
17.
PLoS Biol ; 18(12): e3001025, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33351795

RESUMO

Primordial follicle assembly in the mouse occurs during perinatal ages and largely determines the ovarian reserve that will be available to support the reproductive life span. The development of primordial follicles is controlled by a complex network of interactions between oocytes and ovarian somatic cells that remain poorly understood. In the present research, using single-cell RNA sequencing performed over a time series on murine ovaries, coupled with several bioinformatics analyses, the complete dynamic genetic programs of germ and granulosa cells from E16.5 to postnatal day (PD) 3 were reported. Along with confirming the previously reported expression of genes by germ cells and granulosa cells, our analyses identified 5 distinct cell clusters associated with germ cells and 6 with granulosa cells. Consequently, several new genes expressed at significant levels at each investigated stage were assigned. By building single-cell pseudotemporal trajectories, 3 states and 1 branch point of fate transition for the germ cells were revealed, as well as for the granulosa cells. Moreover, Gene Ontology (GO) term enrichment enabled identification of the biological process most represented in germ cells and granulosa cells or common to both cell types at each specific stage, and the interactions of germ cells and granulosa cells basing on known and novel pathway were presented. Finally, by using single-cell regulatory network inference and clustering (SCENIC) algorithm, we were able to establish a network of regulons that can be postulated as likely candidates for sustaining germ cell-specific transcription programs throughout the period of investigation. Above all, this study provides the whole transcriptome landscape of ovarian cells and unearths new insights during primordial follicle assembly in mice.


Assuntos
Folículo Ovariano/crescimento & desenvolvimento , Folículo Ovariano/metabolismo , Ovário/metabolismo , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Células Germinativas , Células da Granulosa/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Oócitos/metabolismo , Folículo Ovariano/fisiologia , Ovário/citologia , Gravidez , Análise de Célula Única/métodos , Transcriptoma/genética
18.
Sci Rep ; 10(1): 19509, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177542

RESUMO

Mass construction and operation of hazardous waste landfill infrastructure has greatly improved China's waste management and environmental safety. However, the deterioration of engineering materials and the failure of landfill may lead to the release of untreated leachate rich in persistent toxic pollutants to the soil and shallow groundwater. Accordingly, we develop the framework and process model to predict landfill life by coupling the landfill hydrological performance model and material degradation model. We found that the decrease rate of the concentration of persistent pollutants in leachate was significantly slower than the deterioration rate of the landfill engineering materials. As a result, when the materials failed, the leachate with high concentrations of persistent pollutants continued to leak, resulting in the pollutants concentration in surrounding groundwater exceeding the acceptable concentration at around 385 a, which is the average life of a landfill. Further simulation indicated that hydrogeological conditions and the initial concentration of leachate will affect landfill lifespan. The correlation coefficients of concentration, the thickness of vadose zone and the thickness of aquifer are - 0.79, 0.99 and 0.72 respectively, so the thickness of vadose zone having the greatest impact on the life of a landfill. The results presented herein indicate hazardous waste landfill infrastructure reinvestment should be directed toward long-term monitoring and maintenance, waste second-disposal, and site restoration.

19.
Sci Rep ; 9(1): 17881, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31784644

RESUMO

Groundwater pollution and human health risks caused by leachate leakage have become a worldwide environmental problem, and the harm and influence of bacteria in leachate have received increased attention. Setting the isolation distance between landfill sites and groundwater isolation targets is particularly important. Firstly, the intensity model of pollutant leakage source and solute transport model were established for the isolation of pathogenic Escherichia coli. Then, the migration, removal and reduction of bacteria in the aerated zone and ground were simulated. Finally, the isolation distance was calculated based on the acceptable water quality limits, and the influence of hydrogeological arameters was analyzed based on the parameter uncertainty. The results of this study suggest that the isolation distances vary widely ranging from 106 m-5.46 km in sand aquifers, 292 m-13.5 km in gravel aquifers and 2.4-58.7 km in coarse gravel aquifers. The gradient change of groundwater from 0.001 to 0.05 resulted in the isolation distance at the highest gradient position being 2-30 times greater than that at the lowest gradient position. There was a difference in the influence of the thickness of the vadose zone. For example, under the same conditions, with the increase of the thickness of the aeration zone, the isolation distance will be reduced by 1.5-5 times, or under the same thickness of the aeration zone, the isolation distance will be significantly shortened. Accordingly, this needs to be determined based on specific safety isolation requirements. In conclusion, this research has important guiding significance for the environmental safety assessment technology of municipal solid waste landfill.


Assuntos
Água Potável/análise , Monitoramento Ambiental/métodos , Escherichia coli/isolamento & purificação , Eliminação de Resíduos/métodos , Água Potável/microbiologia , Condutividade Elétrica , Instalações de Eliminação de Resíduos , Poluentes Químicos da Água/análise , Qualidade da Água/normas , Poços de Água
20.
Sci Rep ; 9(1): 10944, 2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-31358879

RESUMO

Different pollutants affect electrical characteristics of soil, e.g., electric resistivity and capacity. The most extensively used non-intrusive methods in mapping these physical characteristics are electrical method. To better understand the effect of different hydrogeological and environmental process on resistivity and phase of complex resistivity under water-saturated soil, we carried out a controlled laboratory experiment where the host material was simulated by sand soil and the hydrogeological and environmental processes by groundwater table rise, seawater intrusion and heavy metal contamination. The experiment measured the resistivity and phase of soil saturated and unsaturated, with different pollutants added, together with their time-lapse change in a well-controlled column. With the involvement of more measurement parameters, complex resistivity method can provide more information than resistivity method, thereby having better performance in the detection and monitoring of changes in electrical properties of complex contaminated sites. For example, it is capable of discriminating the different contamination process, in this case, e.g., seawater intrusion and heavy metal contamination. In addition, it is still sensitive to the change of pollutant concentration even in site with high added concentration. Furthermore, simulating the saltwater-intruded site contaminated by manganese, it was found that the change of resistivity (ρ) can hardly be observed, while the responses of phase (φ) are so obvious that can be clearly observed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...